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Abstract. This work generalizes the fermion-like formulation of the Maxwell theory to the non-Abelian
Yang–Mills theory without matter fields. This is a new representation of the Lie algebra valued electric
and magnetic fields. The resulting equations of motion are invariant under the chiral transformation. In
this formulation, duality is a kind of chirality. We may also define local duality transformations in terms
of space-time dependent parameters. There is an N = 1 supersymmetry for the Dirac-like operator in this
representation.

1 Introduction

Over the past few years, our understanding of the non-
perturbative behavior of some supersymmetric field the-
ories and also of string theory has undergone a dramatic
change. This development has been motivated by the dis-
covery of duality symmetry in supersymmetric and string
theories.

Exact electromagnetic duality was first proposed in its
modern form by Montonen and Olive. This duality inter-
changes electric charges with magnetic charges, relating
strong couplings with weak ones [1,2]. There are also du-
ality symmetries in string theories such as target space du-
ality (T-duality) and the S-duality (the generalization of
the electric–magnetic duality) [3,4]. Interesting cases also
exist in the semiclassical view of electrically and magnet-
ically charged black holes [5].

Among these dualities the most familiar one is the
electric–magnetic (EM) duality of the Maxwell equations.
The simplest case is the free Maxwell equations in which
the EM duality is a symmetry of these equations under ro-
tations of the electric and magnetic fields. It is a symmetry
between the equations of motion and the Bianchi identi-
ties. The fermion-like formulation for the electromagnetic
theory has already been studied extensively [8–10]. In this
paper, efforts will be made to generalize the fermion-like
formulation of Majorana [6,7] for the Maxwell theory to
the non-Abelian Yang–Mills theory. In this formulation of
non-Abelian pure gauge fields, duality is a kind of chiral-
ity and the equations of motion are invariant under the
duality transformations. It is also possible to define local
duality trasformations as a result of the new formulation.
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The Dirac-like operator in this representation has N = 1
supersymmetry.

This paper is organized as follows: in Sect. 2, a fermion-
like formulation for the non-Abelian gauge fields is intro-
duces. In Sect. 3, the relation between chirality and duality
is explained. In Sect. 4, it is shown that the square of the
Dirac-like operator has a chiral supersymmetry.

2 Fermion-like formulation
of non-Abelian gauge fields

Feynman once said that “every theoretical physicist who
is any good knows six or seven different theoretical rep-
resentations for exactly the same physics” [13]. In this
part the already established fermion-like formulation of
Maxwell theory is generalized to the non-Abelian pure
gauge fields. We introduce Lie algebra valued gauge fields
by Aµ = Aa

µT
a, and their field strengths as follows:

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (1)

The antihermitian matrices T a satisfy the algebra

[T a, T b] = fabcT c, (2)

and they are normalized by trT aT b = −1/(2)δab. In the
absence of matter fields, in the case of a pure Yang–Mills
theory we have

DµF
µν = 0, (3)

DµF̃
µν = 0, (4)

where

Dµ = ∂µ + [Aµ, ], (5)
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and

F̃µν =
1
2
εµναβFαβ (ε0123 = 1). (6)

We define Lie algebra valued electric and magnetic fields
by

Ei = F i0, (7)

Bi = −1
2
εijkFjk. (8)

Equation (3) for ν = i can be rewritten as

D0F
0i +DjF

ji = 0, (9)

so that the Lie algebra valued electric (7) and the magnetic
(8) fields may be replaced in (9) to obtain (10),

D0E
i = εjikDjBk

= i(Sj)ikDjBk

= i(S.D)ikBk, (10)

where (Si)jk = −iεijk provides us with 3×3 matrices, and
where εijk is the Levi-Civita totally antisymmetric tensor,
normalized as ε123 = 1. The S-matrices are as follows:

S1 =

( 0 0 0
0 0 −i
0 i 0

)
, S2 =

( 0 0 i
0 0 0
−i 0 0

)
,

S3 =

( 0 −i 0
i 0 0
0 0 0

)
. (11)

Equation (10) can be rewritten as

D0Ê = −(S.D)B̂. (12)

Using (4), it is straightforward to see that

D0B̂ = −(S.D)Ê, (13)

where

Ê =

(
E1

E2

E3

)
, B̂ =

( iB1

iB2

iB3

)
. (14)

In order to write (12) and (13) in a fermion-like formula-
tion, the five 6× 6 matrices defined in [10] are used,

Γ i =
(

0 Si

−Si 0

)
,

Γ 0 =
(
I 0
0 −I

)
, Γ 5 =

(
0 I
I 0

)
, (15)

where I is a 3×3 identity matrix, Γ i and Γ 0 are similar to
the Dirac gamma matrices, noting that they do not obey
the usual gamma anticommutation relations. However, Γ 5

anticommutes with the other gamma matrices. We have{
Γ 5, Γµ

}
= 0 (µ = 0, .., 3). (16)

Now a wave function for the gauge fields may be defined
by

ψ =
(
Ê
B̂

)
. (17)

Therefore, (12) and (13) may be written in a compact
form,

ΓµDµψ = 0. (18)

This is similar to the equation of motion for a fermion that
has interaction with a gauge field. Actually (3) and (4) can
be represented by two equations, one a curl equation and
the other a divergence equation [11]. Equation (18) is the
curl part of (3) and (4). It is also possible to find another
equation which implies the divergence parts of (3) and
(4). Let us first consider the simple case where (18) for
the Abelian gauge fields is reduced to

Γµ∂µψ = 0. (19)

This is equivalent to the Maxwell curl equations. Consider
the following equation:

Γ ν∂νΓ
µ∂µψ = 0, (20)

in which the Γµ-matrices do not obey the usual gamma
anticomutation relations and one cannot get to the mass-
less Klein–Gordon wave equation. By adding the two
Maxwell divergence equations to (20), however, the Klein–
Gordon wave equation for ψ may be obtained which is
different from (19). We have

∂µ∂µψ = 0. (21)

Using the same method, a non-linear wave equation can be
obtained for the Lie algebra valued electric and magnetic
gauge fields, or for ψ,

(DµDµ + ΓµΓ ν [Dµ, Dν ])ψ = 0. (22)

Equation (18) together with (22) form a complete set of
equations for describing a classical (electromagnetic) glu-
onic gauge field. Equation (22) reduces to the linear wave
equation (21) for the Abelian gauge fields. The interesting
point about (18) and (19) is that their conserved current
can be defined by

jµ = ψ̄Γµψ. (23)

jµ is exactly equal to the canonical energy momentum
tensor Θ0µ which is a conserved quantity. The other con-
served current for the massless Dirac-like equation (19) is
j5µ = ψ̄ΓµΓ

5ψ which is identically equal to zero in this
case.

3 Duality transformations

Equations (18) and (22) are invariant under the following
chiral transformation:

ψ → ψ′ = eiθΓ5ψ, (24)
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where θ is a constant. One can expand the exponential
phase factor and write it as a 6× 6 matrix:(

Ê′
B̂′

)
=
(
cos θ − sin θ
sin θ cos θ

)(
Ê
B̂

)
. (25)

Therefore, the equations of motion are invariant under ro-
tations of the Lie algebra valued electric and magnetic
fields. For example, at θ = −π/2 electric and magnetic
fields interchange to produce the simplest kind of duality
for non-Abelian pure gauge fields. Considering the follow-
ing local transformations, a local duality transformation
can be defined as follows:

ψ → ψ′ = g−1(x)ψ, (26)
Dµ → gDµg

−1, (27)

where g−1(x) = eiθ(x)Γ5 . The result from transformation
(26) is a mixing of the Lie algebra valued electric and mag-
netic fields through a space-time dependent angle. The
transformation may be called a gauge-like transformation,
but it should be noted that it is not a gauge transforma-
tion for the fields. A Lagrangian formulation may be used
to obtain the basic equation (18),

L(ψ, ψ̄,Dµψ,Dµψ̄) = trψ̄ΓµDµψ. (28)

The Lagrangian is invariant under the chiral (duality)
transformations (24) and the equation of motion for ψ
can be obtained from the Euler–Lagrange equation. We
have

∂L

∂ψ̄
−Dµ

(
∂L

∂Dµψ̄

)
= 0 (29)

⇒ ∂L

∂ψ̄
= 0 (30)

⇒ ΓµDµψ = 0. (31)

4 N = 1 chiral supersymmetry

The interesting point about the curl part (18) of the Yang–
Mills field equations is that the Dirac-like operator in (18)
has an N = 1 supersymmetry. Consider the following def-
initions:

H = (ΓµDµ)2, (32)

Q± =
1
2
(1± Γ 5)ΓµDµ. (33)

It can easily be seen that operators Q± and H satisfy the
usual N = 1 SUSY algebra,

H = {Q+, Q−} , (34)
{H,Q±} = 0. (35)

This is known as N = 1 chiral supersymmetry [12]; it
has not been noticed for the curl part of the equations of
motion for the Yang–Mills gauge fields.

5 Conclusion

In this work, the Majorana formulation of Maxwell theory
was generalized to the Yang–Mills theory. The invariance
of the field equations under a chiral transformation was
used to make global and local duality transformations.
In this representation, the duality transformation was a
kind of chirality with a simple form. Also a new non-linear
wave equation, (22), was developed for the Lie algebra
valued electric and magnetic fields. It will be interesting
to investigate the conserved currents associated with this
non-linear wave equation.
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